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Abstract

A theoretical study of the thermal development of forced convection was performed using a circular tube filled with a saturated por-
ous medium, with constant wall heat flux, and with the effect of viscous dissipation. The solution was obtained using the method of sep-
aration of variables. The Sturm–Liouville system was solved for the eigenvalues. Ordinary differential equations for the eigenfunctions
were solved numerically by the fourth-order Runge–Kutta method. Results show that, in the presence of the viscous dissipation, both the
level and distribution of temperature are altered remarkably, even for small values of the Brinkman number, Br, which is the ratio of heat
generation caused by viscous dissipation to the value of heat flux at the wall. The value of the local Nusselt number, Nu, is demonstrably
independent of Br, unlike the situation in which the wall temperature remains constant.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, increasing attention has been devoted to
problems of forced convection in a porous medium tube
because of the increasing practical use of porous media,
e.g., hyperporous media used in the cooling of electric
equipment [1]. Despite numerous precedent studies of heat
transfer in porous media in the past, analytical solutions of
the various problems of the thermally developing flow in a
pipe with a saturated porous medium were obtained only
recently by Haji-Sheikh and Vafai [2] and Nield et al. [3].
In their studies, solutions were obtained using the method
of separation of variables. The Sturm–Liouville system
was solved for the eigenvalues, and the ordinary differen-
tial equations for the eigenfunctions were calculated
numerically.
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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From a practical point of view, the heat generation
caused by the viscous dissipation plays a role in the devel-
opment of the temperature field in the porous medium pipe
when the value of the permeability of the porous medium
(or Darcy Number, Da) takes a considerably small value
because the drag force is not negligible in this situation, dif-
ferent from the plain Poiseuille flow. Problems of the trans-
port of heavy oil with a very high Prandtl number, Pr, and
the context of particle bed nuclear reactors are also rele-
vant cases. However, among the numerous investigations
of forced convection in porous media, those that have
addressed thermal development associated with viscous
dissipation are quite few [4–8]. Nield and coworkers analyt-
ically investigated forced convection in a circular tube [4]
and a channel bounded by two parallel plates [5,6] that
were maintained at constant temperatures. Hooman and
Ranjbar-Kani [7] theoretically investigated a similar prob-
lem. They solved the problem numerically using an asymp-
totic solution of the fully developed velocity distribution
and found that the fully developed Nusselt number, Nu,
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Nomenclature

Br Brinkman number ð¼lw�2m =qwRÞ
Cp specific heat [J/kg K]
cn coefficients
Da Darcy number (=Kp/R2)
Kp permeability [m2]
M =le/l
Nu Nusselt number
p nondimensional pressure
Pe Peclet number (=Re Pr)
Pr Prandtl number
qw wall heat flux [W/m2]
R tube radius [m]
r nondimensional radial coordinate
Re Reynolds number ð¼ qRw�m=lÞ
Rn eigenfunctions
T temperature [K]
u nondimensional radial velocity
w nondimensional axial velocity
wm nondimensional mean axial velocity
z nondimensional axial coordinate

Greek symbols

a ¼ ðM DaÞ�
1
2

je effective thermal conductivity [W/m K]
kn eigenvalues
l fluid viscosity ½N s=m2�
le effective viscosity ½N s=m2�
H nondimensional temperature ð¼ jeðT � T 0Þ=

qwRÞ
h nondimensional temperature
hg nondimensional temperature
q density ½jc=l3�

Subscripts and superscripts

0 flow entrance
m bulk mean value
w wall
� dimensional quantities
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is independent of the Brinkman number, Br, although the
developing Nu depends strongly on the Br. Hooman and
coworker [8] also investigated the viscous dissipation effect
on forced convection in a porous saturated circular tube
with an isoflux wall using perturbation analysis.

In the present study, in a manner similar to that of Nield
et al., we solved the problem of thermal development of
forced convection in a circular tube filled with a saturated
porous medium, with constant wall heat flux, and with the
effect of viscous dissipation [3]. In modeling the flow field in
a porous medium, the Brinkman flow model [9] was incor-
porated into momentum equations. The analysis engenders
expressions for the local Nu as a function of the nondimen-
sional longitudinal coordinate along the circular tube.
Fig. 1. Problem description.
2. Mathematical model development

In the present study, heat and fluid flow in a circular
tube filled with a saturated homogeneous porous medium
were investigated analytically and numerically. The tube
with radius R was aligned with the z-axis whose origin
(z = 0) corresponds to the entrance of the flow where the
velocity and thermal boundary condition were applied
(Fig. 1). We assumed that flow was steady and axisymmet-
ric about the center axis of the tube. The uniform heat flux
qw was applied over the wall. The direction of the heat flux
toward the tube internal area was taken as positive.

The Brinkman momentum equation of the steady state
flow in the porous medium of permeability Kp is given as

0 ¼ � op�

oz�
þ leDw� � l

Kp
w�; ð1Þ
where w*, p, le, l, and D respectively represent the axial
flow velocity, the hydraulic pressure, effective viscosity,
fluid viscosity, and the Laplace operator. Note that depen-
dent variables with superscript, ( )*, are dimensional values.
The boundary conditions are

w�jr�¼R ¼ 0

ow�

or�

����
r�¼0

¼ 0

9=
;: ð2Þ

The energy equation for flow in the saturated porous med-
ium is given as

qCpw�
oT
oz�
¼ jeDT þW�; ð3Þ

where T*, q, Cp and je respectively denote the fluid temper-
ature, fluid density, specific heat capacity, and effective
thermal conductivity of the fluid. The term W* is the contri-
bution caused by viscous dissipation. The thermal bound-
ary conditions are
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oT
or�

����
r�¼0

¼ 0

je

oT
or�

����
r�¼R

¼ qw

9>>>=
>>>;

; ð4Þ

we define nondimensional variables as

z ¼ z�

R � Pe
; r ¼ r�

R
; M ¼ le

l
; w ¼ w�

w�m
; ð5Þ

where w�m is the mean flow velocity defined as

w�m ¼
2

R2

Z R

0

w�r� dr�: ð6Þ

Here the Peclet number, Pe, and the Reynolds number, Re,
are

Pe ¼ RePr ¼ qCpRw�m
je

ð7Þ

and

Re ¼ qRw�m
l

: ð8Þ

The nondimensional form of Eq. (1) is

M
1

r
o

or
r

o

or

� �
w� 1

Da
wþ 1 ¼ 0; ð9Þ

where Da is defined as

Da ¼ Kp

R2
: ð10Þ

Because the fluid properties are assumed to be constant, i.e.
independent of temperature, the solution of the flow field is
decoupled from the thermal solution. Therefore, the solu-
tion of Eq. (9) subject to the boundary condition w = 0
at r = 1, and dw/dr = 0 at r = 0 is readily obtained as

w ¼ aI0ðaÞ
aI0ðaÞ � 2I1ðaÞ

1� I0ðarÞ
I0ðaÞ

� �
; ð11Þ

where In(a) and a respectively denote a modified Bessel
function of nth order, and

a ¼ 1ffiffiffiffiffiffiffiffiffiffi
MDa
p : ð12Þ

Furthermore, the nondimensional variable is defined as

H ¼ je

T � T 0

qwR
: ð13Þ

Several forms of the model have been proposed for descrip-
tion of the viscous dissipation term [10,11]. For the present
study, we applied the viscous dissipation term recently pro-
posed by Nield [12]:

W� ¼ l
Kp

w�
2 � lew

�Dw�: ð14Þ

Therefore, the nondimensional form of the energy equation
is obtained by substituting Eqs. (13) and (14) into Eq. (3)
as

w
oH
oz
¼ 1

r
o

or
r

o

or

� �
Hþ Br

Da
w2 � 1

a2

w
r

o

or
r

o

or

� �
w

� �
: ð15Þ
Here, Br is the conventional Br [13]:

Br ¼ lw�
2

m

qwR
: ð16Þ

The thermal boundary conditions in Eq. (4) are rewritten in
nondimensional forms as

oH
or

����
r¼0

¼ 0

oH
or

����
r¼1

¼ 1

9>>>=
>>>;
: ð17Þ

Substitution of Eq. (11) into (15) yields the final form of the
energy equation to be solved

aI0ðaÞ
aI0ðaÞ � 2I1ðaÞ

1� I0ðarÞ
I0ðaÞ

� �
oH
oz

¼ 1

r
o

or
r

o

or

� �
H

þ Br
Da

aI0ðaÞ
aI0ðaÞ � 2I1ðaÞ

� �2

1� I0ðarÞ
I0ðaÞ

� �
: ð18Þ

Eq. (18) is non-homogeneous; therefore, the solution H is
expressible as the sum of a particular solution, h, and the
general (homogeneous) solution, hg

H ¼ hþ hg ð19Þ
Note that h describes the axial variation of the local tem-
perature, and hg describes the main decaying term given
as an infinite series in terms of the eigenvalues and eigen-
function of the Sturm–Liouville type equation, similarly
to the classical Graetz problem. First, to seek a particular
solution, h, we use the relation of the temperature gradient
in the fully developed thermal condition:

oH
oz
¼ oh

oz
¼ dhm

dz
ðz!1; hg ¼ 0Þ; ð20Þ

where hm is the bulk temperature. Therefore, Eq. (18) can
be rewritten as

1

r
o

or
r

o

or

� �
h ¼ aI0ðaÞ

aI0ðaÞ � 2I1ðaÞ
1� I0ðarÞ

I0ðaÞ

� �

� dhm

dz
� Br

Da
aI0ðaÞ

aI0ðaÞ � 2I1ðaÞ

� �
: ð21Þ

Integration of Eq. (21) with respect to r from 0 to 1, and
the use of Eq. (17) yields the following result:

dhm

dz
¼ 2þ Br

Da
aI0ðaÞ

aI0ðaÞ � 2I1ðaÞ
ð22Þ

Therefore, the bulk temperature variation along z-axis is
obtained as

hm ¼ 2þ Br
Da

aI0ðaÞ
aI0ðaÞ � 2I1ðaÞ

� �
z: ð23Þ

On the other hand, integration of Eq. (21) twice engenders
the following result:

h ¼ aI0ðaÞ
aI0ðaÞ � 2I1ðaÞ

dhm

dz

� �
1

4
r2 � I0ðarÞ

a2I0ðaÞ

� �
þ C; ð24Þ



Fig. 2. Axial flow velocity profiles.
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where C is an integration constant. To determine the value
of C, we used the alternative expression of the bulk temper-
ature, hm, which is calculated from a heat balance over a
cross-section of the circular tube. Consequently, hm

becomes

hm ¼ 2

Z 1

0

hwr dr

¼ fða
2 þ 8Þ½aI0ðaÞ � 4I1ðaÞ�I0ðaÞ þ 8a½I2

0ðaÞ � I2
1ðaÞ�g

4a½aI0ðaÞ � 2I1ðaÞ�2

þ C:

ð25Þ
Therefore, the value of C is obtained as follows:

C ¼ 2þ Br
Da

aI0ðaÞ
aI0ðaÞ � 2I1ðaÞ

� �
z

� fða
2 þ 8Þ½aI0ðaÞ � 4I1ðaÞ�I0ðaÞ þ 8a½I2

0ðaÞ � I2
1ðaÞ�g

4a½aI0ðaÞ � 2I1ðaÞ�2
:

ð26Þ
Finally, the particular solution is obtained by substituting
Eq. (26) into Eq. (24) as

h ¼ 2aI0ðaÞ
aI0ðaÞ � 2I1ðaÞ

1

4
r2 � I0ðarÞ

a2I0ðaÞ

� �

þ 2þ Br
Da

aI0ðaÞ
aI0ðaÞ � 2I1ðaÞ

� �
z

� fða
2 þ 8Þ½aI0ðaÞ � 4I1ðaÞ�I0ðaÞ þ 8a½I2

0ðaÞ � I2
1ðaÞ�g

4a½aI0ðaÞ � 2I1ðaÞ�2
:

ð27Þ
The general equation for hg is of the form (Br = 0 in Eq.
(18))

aI0ðaÞ
aI0ðaÞ � 2I1ðaÞ

1� I0ðarÞ
I0ðaÞ

� �
ohg

oz
¼ 1

r
o

or
r

o

or

� �
hg; ð28Þ

and the corresponding boundary conditions are

hg

��
z¼0
¼ hjz¼0¼

2aI0ðaÞ
aI0ðaÞ�2I1ðaÞ

1

4
r2� I0ðarÞ

a2I0ðaÞ

� �

�fða
2þ8Þ½aI0ðaÞ�4I1ðaÞ�I0ðaÞþ8a½I2

0ðaÞ� I2
1ðaÞ�g

4a½aI0ðaÞ�2I1ðaÞ�2

ohg

or

����
r¼0

¼ 0

ohg

or

����
r¼1

¼ 0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð29Þ
Presume that the solution to Eq. (28) and (29) is of the
form

hg ¼
X1
n¼1

cnRnðrÞe�k2
nz; ð30Þ

where cn are the coefficients, Rn(r) are the eigenfunctions,
and kn are the eigenvalues. Substituting Eq. (30) into
(28), we obtain the following nonlinear eigenvalue
problem:

1

r
o

or
r

o

or

� �
RnðrÞ þ k2

n

aI0ðaÞ
aI0ðaÞ � 2I1ðaÞ

1� I0ðarÞ
I0ðaÞ

� �
RnðrÞ ¼ 0;

ð31Þ
with the boundary conditions

oRnðrÞ
or

����
r¼0

¼ 0

oRnðrÞ
or

����
r¼1

¼ 0

9>>>=
>>>;
: ð32Þ

Because Eqs. (31) and (32) constitute a Sturm–Liouville
system, the series coefficient cn is given as

cn ¼
R 1

0
Hjz¼0½I0ðaÞ � I0ðarÞ�RnðrÞr drR 1

0
½I0ðaÞ � I0ðarÞ�R2

nðrÞr dr
: ð33Þ

Eq. (31) were solved using the fourth-order Runge–Kutta
method by varying the value of an eigenvalue to satisfy
Eq. (32). This yields the accurate eigenvalue and the corre-
sponding function is the required solution of Eq. (31). Once
the eigenvalues and eigenfunctions have been obtained, cn

can readily be obtained by performing the integration of
Eq. (33) numerically.

Therefore, the local Nu is given as

Nu ¼ 2

Hjr¼1 � hm

: ð34Þ
3. Results and discussion

The analytical solutions were compared with numerical
results [14] because there is no analytical solution of the
heat transfer in a circular pipe saturated with a porous
medium that accounts for the effects of viscous dissipation



Fig. 3. Local Nu profiles along the tube at various values of MDa.

2410 S. Tada, K. Ichimiya / International Journal of Heat and Mass Transfer 50 (2007) 2406–2413
and constant wall heat flux. Fig. 2 shows profiles of the
axial velocity (Eq. (11)) for five different values of MDa.
In that figure, MDa =1 is the result for the plain Poiseu-
ille flow.

Fig. 3 shows variations of the Nu (Eq. (34)) with non-
dimensional distance from the pipe entrance (z = 0) for
various values of MDa for Br = 0 (without viscous
dissipation) using 350 eigenvalues. Some representative
values of the local Nu for various values of MDa are listed
in Table 1 for convenience. For values of MDa smaller
than 1 � 10�4, the value of Nu in a log–log plot shows a
departure from linear behavior as z approaches zero (not
shown) because of insufficient number of eigenvalues
used in evaluating the exact solution. The critical value of
the axial position, zð¼ z�=RPeÞ, the smallest value of z

that gives the accurate Nu, was about zcrit ¼ 1� 10�5 for
any MDa greater than MDa ¼ 2� 10�6 (in the case of
MDa ¼ 2� 10�6; zcrit ffi 5� 10�5Þ. In the present study, it
was difficult to obtain more eigenvalues than 350 because
of rounding errors that resulted from the finite computer
capacity. As a reference, it took about seven days to obtain
350 eigenvalues using a 128-CPU parallelized super com-
puter Origin 2000. In the figure, numerical results [14]
Table 1
Nusselt number, Nu, for various values of MDa

Z*/RPe Nu

MDa 2.0E�06 1.0E�04 1.0E�02 1.0E+00 1.0E+02

5.0E�05 217.227 145.894 77.277 55.897 54.791
1.0E�04 160.683 114.107 61.262 44.312 43.505
5.0E�04 77.384 61.885 35.302 25.673 25.274
1.0E�03 56.231 47.005 27.779 20.282 19.984
5.0E�03 27.104 24.510 15.971 11.800 11.646
1.0E�02 20.092 18.593 12.669 9.414 9.296
5.0E�02 10.962 10.484 7.825 5.870 5.802
1.0E�01 9.102 8.767 6.715 5.031 4.973
5.0E�01 7.958 7.699 5.988 4.421 4.367
1.0E+00 7.955 7.697 5.986 4.418 4.364
5.0E+00 7.955 7.697 5.986 4.418 4.364
1.0E+01 7.955 7.697 5.986 4.418 4.364
are shown for comparison. The results show good agree-
ment with those of Nield et al. [15]. The value of
MDa ¼ 2� 10�6 is the smallest value for which we were
able to make the calculation and which approximates the
case of Darcy (slag) flow. The fully developed value of
7.955 for MDa ¼ 2� 10�6 of the exact solution is close to
the known value 8.000 [16] for the Darcy flow (MDa = 0).

Fig. 4 shows the dependence of nondimensional wall
temperature Hw on nondimensional distance from the pipe
entrance, z�=RPe for three different values of Br. The value
of MDa remained constant at MDa ¼ 1� 10�2. Both ana-
lytical and numerical results show good agreement with
each other. The wall temperature increases gradually along
the downstream direction of the circular pipe before the
flow field became thermally fully developed where the slope
of the wall temperature become constant. However, the
temperature field is remarkably altered when the value of
the Br takes non-zero values. For values of Br ¼ 1� 10�2

and 1� 10�1, profiles of the wall temperature take higher
values than that for Br = 0 at any locations because of
the heat generation caused by viscous dissipation. For the
value of Br ¼ 1� 10�2, the ratio of the amount of heat
generation in the entire volume to that of the heat entry
through the wall is small. For that reason, the effect of heat
generation on the level of the wall temperature is minor.
For the value of Br ¼ 1� 10�1, the wall temperature pro-
file is largely deviated from that for Br = 0 because the heat
transfer at the wall is dominated by heat generation caused
by viscous dissipation. This dependence of the wall temper-
ature profile on Br becomes considerable for smaller MDa
because the viscous dissipation is considerable for flow in
the porous medium with a quite low value of Da. Some rep-
resentative values of the wall temperature, Hw, along the
flow direction with a wide range of the MDa for values
of Br = 0, 1� 10�2, and 1� 10�1 are shown in Table 2
for convenience.

Temperature profiles in the cross-section of the circular
pipe at different locations of z�=RPe for three different
Fig. 4. Nondimensional wall temperature profiles along the tube at
various values of Br.



Table 2
Wall temperature, HW, for various values of MDa and Br

Z*/RPe MDa

1.0E�04 1.0E�02 1.0E+00 1.0E+02

Br 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1

1.0E�05 0.009 0.010 0.019 0.016 0.016 0.016 0.022 0.022 0.022 0.022 3.022 0.022
5.0E�05 0.014 0.019 0.065 0.026 0.026 0.027 0.036 0.036 0.036 0.037 3.037 0.037
1.0E�04 0.018 0.028 0.120 0.033 0.033 0.034 0.046 0.046 0.046 0.046 0.046 0.046
5.0E�04 0.033 0.084 0.543 0.058 0.058 0.064 0.079 0.079 0.080 0.080 1080 0.081
1.0E�03 0.045 0.147 1.065 0.074 0.075 0.086 0.101 0.101 0.102 0.102 1102 0.103
5.0E�03 0.092 0.602 5.193 0.135 0.141 0.197 0.180 0.180 0.184 0.182 1182 0.186
1.0E�02 0.128 1.148 10.331 0.178 0.190 0.301 0.233 0.234 0.242 0.235 3.236 0.243
5.0E�02 0.291 5.392 51.306 0.356 0.417 0.973 0.441 0.446 0.488 0.445 1449 0.485
1.0E�01 0.428 10.631 102.459 0.498 0.621 1.732 0.598 0.607 0.691 0.602 1610 0.682
5.0E�01 1.260 52.275 511.412 1.334 1.951 7.505 1.453 1.499 1.919 1.458 1.498 1.859
1.0E+00 2.260 104.290 1022.564 2.334 3.568 14.676 2.453 2.546 3.386 2.458 2.538 3.260
5.0E+00 10.260 520.412 5111.779 10.334 16.505 72.041 10.453 10.919 15.116 10.458 11859 14.465
1.0E+01 20.260 1040.564 10223.298 20.334 32.676 143.748 20.453 21.386 29.780 20.458 21.260 28.472
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values of Br are shown in Fig. 5. The convergence of the
infinite series is very slow at r/R = 0; therefore we plotted
the results from z�=RPe ¼ 0:002: The temperature distribu-
Fig. 5. Radial distribution of the temperature at Br: (top) Br = 0, (middle)
Br ¼ 1� 10�2, (bottom) Br ¼ 1� 10�1.
tions in cross-sections at any location along the axial direc-
tion are strongly dependent on the value of Br as well as the
wall temperature shown in Fig. 4. At any location, the wall
temperature is higher than the fluid phase temperature to
maintain a positive heat flux at the wall. For a larger value
of Br ¼ 1� 10�1, the temperature field reaches the ther-
mally fully developed condition in a short entrance length
of z�=R Pe of ca. 0.02 because of the strong heat generation
throughout the entire volume of the porous medium. Tem-
peratures in the porous medium increase along the down-
stream direction, as shown previously in Fig. 4; the slope
of the wall temperature profile for Br ¼ 1� 10�1 is almost
constant at locations z�=RPe > 0:02.

Contours of the temperature difference, H � hm, for
three different values of MDa are illustrated in Fig. 6.
The value of Br remains constant at Br ¼ 1� 10�2. That
figure shows the temperature distribution only within
regions of z�=R Pe < 0:2 because the temperature field
reaches a thermally fully developed condition at this loca-
tion for any value of MDa in the present study. It is note-
worthy that the temperature difference in the immediate
vicinity of the wall increases as the value of MDa increases,
implying that a larger value of the MDa renders the radial
distribution of the temperature to be non-uniform for the
simple reason that magnitudes of the first term of the vis-
cous dissipation term used in the present study (Eq. (14))
are proportional to the value of the square of the axial
velocity component. That value differs slightly from the
conventional one that appears in momentum equations
for the plain Poiseuille flow case. In other words, the
spatial distribution of the heat generation caused by the
viscous dissipation in the transverse direction to the flow
becomes uniform as the value of MDa decreases because
the radial distribution of the axial velocity changes its pro-
file from a parabolic to a uniform distribution as the value
of MDa decreases (see Fig. 2).

The local Nu based on the pipe radius is plotted against
the longitudinal coordinate that was nondimensionalized in



Fig. 6. Contours of temperature difference, H� hm, for three different
values of MDa: (top) MDa = 1, (middle) MDa ¼ 1� 10�2, (bottom)
MDa ¼ 1� 10�4.
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terms of the pipe radius and Pe, z�=R Pe, in Fig. 7. The thin
solid lines indicate exact solutions (Eq. (34)) with a wide
range of MDa for various values of Br. Results of numer-
ical computations for MDa ¼ 1� 10�2 are indicated (open
symbols) for comparison. It is noteworthy that, for porous
media, the local Nu is independent of the Br, even though
the heat generation caused by the viscous dissipation of
flow remarkably alters the temperature distribution, as
shown previously. However, these findings should be inter-
preted with caution because the way of Nu dependence on
Br is entirely different from different forms of the viscous
dissipation term, except when the MDa takes a small value
[5]. In the present study, we applied the most proper model
Fig. 7. Local Nu profiles along the axial direction at various values of the
Br. Lines of the exact solution are, from the top, for MDa ¼ 2� 10�6,
1� 10�4, 1� 10�2, 1� 100, 1� 102.
for viscous dissipation in porous media [12]. However, the
difference in the value of Nu among models is not signifi-
cant for small MDa, which is adaptive for most porous
materials. In addition, general features of heat transfer in
porous media differ greatly from those of the plain Poiseu-
ille flow as well. Thick lines (solid, dashed, dot-dashed, dot-
ted) in Fig. 7 are plots of numerical results for the plain
Poiseuille flow for different values of Br. As a reference,
analytically obtained values of the local Nu for the ther-
mally fully developed condition obtained by Coelho et al.
[17] (closed circles) are shown together. For the plain
Poiseuille flow, the local Nu decreased with increasing Br

because the magnitude of the heat generation in the flow
is proportional to the value of the square of the local axial
velocity gradient. In the immediate vicinity of the wall, heat
coming into the tube through the wall is transferred later-
ally only slightly toward the central core region because
of the strong axial convective transport, which prevents
heat from being transferred by the radial conduction trans-
port. Therefore, the temperature rise in the core central
region is not considerable when compared with the wall
temperature, leading to the reduced value of the bulk tem-
perature, which consequently reduces the value of the wall
Nu (see Eq. (34)).

4. Summary

The governing equations for steadily developing forced
convection in a circular tube filled with the saturated por-
ous medium subjected to the boundary condition of the
constant wall heat flux, with the viscous dissipation, were
solved analytically. The solution was obtained using the
method of separation of variables. The Sturm–Liouville
system was solved to obtain the eigenvalues; ordinary dif-
ferential equations for the eigenfunctions were calculated
numerically using the fourth-order Runge–Kutta method.
Results show that values of the local Nu evolution along
the flow direction increase concomitant with decrease in
the value of the MDa. However, values of the local Nu

are independent of Br. The temperature profile is strongly
dependent on the values of Br and MDa. Results also show
that the effect of the viscous dissipation alters the transver-
sal profile of the developing temperature field at any loca-
tion in the tube because of the uniformly distributed heat
sources of the dissipative term in the energy equation. This
feature of the thermal behavior in porous media differs
entirely from that in the plain Poiseuille flow case.
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